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A new method, using a high-speed computer, is introduced for the evaluation of large numbers of spectral 
moments for crystals with short-range interactions. As an example, the first 34 even moments are obtained 
for the fee lattice with nearest-neighbor central interactions. Accurate algebraic expressions for the thermo
dynamic properties have been obtained, at all temperatures, by the use of the Pade* approximant on the 
high-temperature moment expansions, together with three terms in the low-temperature expansion. To 
estimate the order of magnitude of the errors to be expected, the method is applied to a linear chain and the 
results compared with the exact solution. The fractional error has a maximum of order 2 X 10~4, and is less 
than 1X 10~5 for much of the range. An approximation to the spectrum of the fee lattice is derived by an 
orthogonal polynomial expansion. 

INTRODUCTION 

MUCH work has been carried out to determine the 
spectra and thermodynamic properties of crystal 

models since Born1 first proposed his theory of lattice 
vibrations. As the number of models which have been 
solved exactly2 is small, most of this work has been con
centrated on the approximate methods. 

These methods fall into two main groups, the 
sampling methods and the exact series expansions. The 
sampling methods enable a histogram approximation of 
the frequency spectrum to be obtained by evaluating 
the frequencies at a finite number of points in the 
Brillouin zone. Blackman3 first developed this method 
by using hand calculations. The advent of digital com
puters, in the 1950's, led many workers4-6 to carry out 
extensive sampling calculations. The speed at which 
these calculations could be performed enabled the 
accuracy of the spectrum calculation to be increased by 
an order of magnitude. This provided a simple means 
of investigating the properties of models, and little 
attention was given to its possible application to the 
exact series expansion method. 

The sampling methods require the spectrum to be 
stored, numerically, in the form of a histogram. There
fore, numerical techniques have to be applied to obtain 
the thermodynamic properties, and the accuracy of the 
final result is not easy to assess. This makes it difficult 
to compare related models. 

Exact series expansions can be derived at high and 
low temperatures. At high temperatures, Montroll7-9 

1 M. Born, Atomtheorie de festen Zustands (Teubner, Leipzig, 
1923). 

2 E. W. Montroll, in Proceedings of the Third Berkeley Sym
posium on Mathematical Statistics and Probability (University of 
California Press, Berkeley, California, 1956), Vol. 3, p. 209. 

3 M. Blackman, Proc. Roy. Soc. (London) A148, 365 and 384 
(1934). 

4 E . H. Jacobson, Phys. Rev. 97, 654 (1955). 
5 C. B. Walker, Phys. Rev. 103, 547 (1956). 
6 W. C. Overton, National Research Laboratories Report 5252, 

1959 (unpublished). 
7 E. W. Montroll, J. Chem. Phys. 10, 218 (1942). 
8 E. W. Montroll, J. Chem. Phys. 11, 481 (1943). 
9 E. W. Montroll and D. Peaslee, J. Chem. Phys. 12, 98 (1944). 

has expanded the thermodynamic properties in terms of 
the moments of the frequency spectrum. He obtained, 
by analytical methods, the first seven even moments for 
a number of ordered cubic models. The moment expan
sions have none of the disadvantages of the sampling 
methods and provide the added attraction of an 
algebraic expansion for both the spectrum and the 
thermodynamic properties. The main reasons why this 
method has not been more widely used are (a) the 
difficulties in obtaining higher moments, and (b) the 
divergence of the series expansions when ®/T=2TT 
(where ® = hvmzx/k and T is the temperature), i.e., at 
low temperatures. The low temperature series expan
sions are usually restricted to two terms, due to the 
complexity of the integrals involved. 

In this paper a new method is described based on the 
equivalence, under certain restrictions, of the moments 
on a finite lattice with those on an infinite lattice. The 
use of an electronic computer enables the exact value 
of large numbers of moments to be calculated on the 
finite lattice, and thence for an infinite lattice. This 
overcomes difficulty (a). 

The divergence of the thermodynamic expansions 
when \/T becomes large has been overcome by the use 
of Pade approximants.10"12 This, together with only one 
term in the low-frequency expansion, yields an accuracy 
of over one part in 103 at all temperatures. At very low 
and high temperatures the accuracy is much better. The 
spectrum can be expanded in an orthogonal set of poly
nomials whose coefficients are linear combinations of 
the moments. The optimum convergence of this expan
sion can be obtained by first obtaining the position and 
behavior at the critical points in the spectrum,13,14 and 
subtracting their contribution from the moments of the 
spectrum. 

At present the fastest computers enable about 100 

10 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
11 G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. Math. Anal. 

and Appl. 2, 21 and 405 (1961). 
12 C. Domb and C. Isenberg, Proc. Phys. Soc. (London) 79, 3 

and 509 (1962). 
13L. Van Hove, Phys. Rev. 89, 1189 (1953). 
14 M. Lax and V. L. Lebowitz, Phys. Rev. 96, 3 (1954). 
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even moments to be obtained. These calculations require 
the use of multilength working, on the machine, if all 
of the information contained in this number of moments 
is to be extracted. The method is applicable to lattices 
with complex unit cells and to models with interactions 
extending to 30 nearest-neighbor atoms. (This limit is 
set only by the speed of the machine.) Moments could, 
thus, be derived for all but ionic crystals, where the 
interactions are long range. The method can also be 
extended to yield moments on the disordered lattices. 

THEORETICAL ANALYSIS 

In this section it is shown that under certain condi
tions the spectral moments on a finite lattice, with 
cyclic boundary conditions, are equal to those on the 
infinite lattice. 

Consider a lattice made up of NXNXN cells each 
defined by vectors as (s— 1, 2, 3). Then the position of 
any cell is given by 

1 = 5 - h&8, J«=l, 2, •N. (1) 

Let fi2n(N) be the 2^th moment of the spectrum for the 
finite lattice in which there are interactions between cells 
for which ls^T (s— 1, 2, 3). Then we shall show that, 

M2n(A0 = M2tt(°°) providing n<N/T. (2) 

If b5 are the vectors of a cell in reciprocal space it is con
venient to define 

* = 2 kshs h8=l, 2, • • -N (3) 

(4) 

(5) 

(6) 

There are r particles in each cell of which /cth and /c'th are 
typical with masses MK and MK

f, respectively, then the 
secular equation for the frequencies of the normal modes 
of this lattice are given by15 

where 

and 

whereupon 

&r* "s — Or,s ? 

2ir 3 

e=-l*,b„ N i 

2x 3 

e-l=-E«. N i 

\Da 

where 
W / 

-a>25aa '5«ic ' = 0 , m 

D-Q- (M,MJr*T.*a a exp(il-e), (8) 

15 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid 
State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1963), Suppl. III . 

in which $ is the total potential, a and a! are two direc

tions in the crystal, uj J is the displacement of the /cth 

atom in the 1th cell in the a direction, and 

d2$ 

•~G— «0H°) 
(9) 

where this derivative is evaluated at equilibrium. The 
derivation of equation (7) assumes that the forces are 
short range, and cyclic boundary conditions are imposed 
on the lattice. The 2wth spectral moment of this lattice 
is defined by 

1 
M2n(#)= £<o /» (e ) , 

3rN* e,i 
(10) 

where oo3 is the j t h root of (7). Since the trace of the nth. 
power of a matrix is equal to the sum of the powers of 
its roots we have 

M2nW = L T r | 
3rN* e {<)]• (ID 

So that, 

3WV3 e 
ak<*3' ' '"amoci) \ I ^ J 

where the primed sum indicates a sum over all n indices 
i, j , k, - • • m of the cyclic product of elements of the D 
matrix, in which the ithjth elements is Daiaj. Letting 
H denote the cyclic product of elements a%aj this 
becomes 

M2nW= E E ' I I A , * , , . (13) 
3f iV 3 e 

Assuming that interactions occur only between 
atoms for which 

h^T s=l, 2 ,3 

and substituting into (13) for Daiaj from (7) we obtain 

1 
/*2»W= E E ' I I 

3rNz 
(MMfY •1/2 

X 
l,h,h=~T \KK J 

exp(^l-O) (14) 

We now multiply out the sum over lh h, h, so that each 
term contains only one exponential term. In order to do 
this we introduce lpij where p is the pth. term in the 
expansion of 

+T 

-T 0 exp(^l'O), 
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and the indices t, j refer to this sum. Hence, 

M2,0V)=—E E ' L " CII(M,MK0- 1 / 2 ] 

/*-pij\ I 

X I I <&«<«,( , J exp(iO-l^) J , (15) 

where I I is the cyclic product in i a n d j , and X)" *s the 
sum over all possible values of p. We can condense the 
notation by writing 

Substituting in (17) from (19) finally yields 

and 

So tha t , 

II *-,«,(. , )=A( , ), 
\KK / \ KK / 

n(MKMK0"1/2=r({/c/}). 

1 /{hij}\ 
M2nW= E E ' E " r ( M ) A , ) 

Xexp(fe-Elp»y), (16) 

where X) ' P # *S t n e s u m o v e r a n IpO occurring in the 
product I I m (15). From (6), 

1 N /{hij}\ 
M2n(A0= Z X , E , , r ( { / c / } ) A 

3rN* kiMM^i \ KK' / 

( -hs \ 
D( 2iri—X Ispij 1 
' \ AT / 

X l l e x p [2wi-Y,lspij) (17) 
- i \ AT 

where lpi3= (hPij, hPij, hpij). Now, providing 

T,lspij<N, (18) 

the sum of the geometric series 

N / hs \ 
X expf 27ri—X J«p»y ) = A^50fszSj 

A.-1 \ AT / 

(19) 

But, we have insured that ls^T (s= 1, 2, 3), i.e. 

J . * ; ^ . (20) 

Hence, as there are only n terms in the sum 

If (19) and (20) are to be satisfied simultaneously, we 
must have 

N>nT. (21) 

n2n(N)= X'X"r({ 
3rN* 

M W Pij) 
\KK/ 

XlLNBo.21.,,,, (22) 

1 4. 
=-E'E"r({K /})A(^ 'N)n, (23) 

This sum is independent of N under condition (21). 
Thus, the first n even moments on a finite NXNXN 
cell lattice (i.e. excluding n=0) are equal to the 
moments on the infinite lattice, providing 

n<N/T. (24) 

The optimum condition occurs when n is equal to the 
integer which is just below N/T. 

This result can be seen more easily by expanding the 
moments in terms of walks with returns to the origin15'16 

on the lattice. The ^th even moments, on the NXNXN 
lattice with cyclic boundary conditions, depends only on 
the walks which return to the origin in less than (n+1) 
steps. If the interaction extends between cells, at least 
one of whose coordinates, (h,h,h) differ by T then the 
largest step is of size T. The distance covered in any one 
walk is less than or equal to nT. Now providing, during 
the course of a walk, we do not completely encircle the 
lattice i.e., nT<N the result will be the same as on the 
infinite lattice. 

The first n even moments on any infinite lattice can, 
thus, be calculated, under condition (24) by numerically 
evaluating the traces of the dynamical matrix, D, for a 
finite NXNXN lattice. This can be accomplished very 
easily with the use of a digital computer and provides a 
simple, straightforward, method for obtaining numerous 
spectral moments. 

APPLICATION TO THE fee NEAREST-
NEIGHBOR MODEL 

The first seven even moments, on this lattice model, 
were originally evaluated by Domb and Salter17 using 
the results of Montroll8 on the simple cubic lattice. 
Montroll expanded the traces of the dynamical matrix 
algebraically and then summed over all 6 values. This 
method soon becomes cumbersome, and the work 
involved increases rapidly if further moments are to be 
obtained. The algebra might be carried out on a com
puter, but the limitations on the storage space limit the 
number of moments that may be calculated to about ten. 

The secular equation for the fee lattice has been de
rived by Leighton18 and is 

-cos#(cosy+cos2)-
siny sinx 
sing sinx 

- X2 sin# siny 
2 — cosy (cosx-f cosz)—X2 

sins siny 

sm# sms 
siny sins 

- cosz (cos#+ cosy) -
16 C. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Phys. Rev. 115, 1, 18, and 24 (1959). 
17 C. Domb and L. Salter, Phil. Mag. 43, 7 (1952).! 
18 R. B. Leighton, Rev. Mod, Phys. 20, 165 (1948). 

X2 =o, (25) 
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where \2=2T2m2/a, a being the nearest-neighbor force 
constant, and v the frequency, and m the mass of an 
atom. 

Also 

7T 

N 

IT 

y——(l—tn+n), 
N 
IT 

z=—(l+m—n), 
N 

where the indices /, m, n, take the values 1, 2, • • -iV. 
The calculation of the moments requires the evalua

tion of the sum of the even powers of the roots of this 
equation for a finite value of N. The number of moments 
that can be calculated is (N— 1) as the interactions are 
restricted to nearest-neighbor atoms. This calculation 
can be done most efficiently by storing all the cosines 
that will be required in the course of the calculation, and 
then evaluating the first three traces Si, s2, s3 for a point 
in the Brillouin zone. From these traces all subsequent 
traces can be calculated by the well-known relationships 
in the theory of equations19: 

S2+piSx+2p2=0, 

Sz+piS2+p2Si+3pz=0. (26). 
For n> 3 

Sn+ plSn-l+ p2Sn-2+ psSn-3= 0 . 

The three unknown coefficients pi, p2, pz can be deter
mined from si, S2, s% and, thence, one can calculate sn 

for n>3. Alternatively the roots of the equation can be 
obtained directly and raised to the appropriate powers. 

The calculation can be reduced by a factor of 48 by 
using the cubic symmetry of the lattice. The secular 
equation need only be solved in one symmetry element 
of the Brillouin zone, which is repeated 48 times. The 
traces of the dynamical matrix, at any point in this 
element, must be suitably weighted according to its 
position in the Brillouin zone. For example, points that 
occur along an edge of the symmetry element will have 
a different weight from those that are situated in a face. 
The sum of the weighted traces, at all the points in this 
element, will give the moments. In practice it is con
venient to use the normalized moments u<in defined by 

/•''max 

U2n= *W~ 2 W / V2ng(x)dx, (27) 
J 0 

19 H. W. Turnbull, Theory of Equations (Oliver & Boyd. London, 
1939). 

where x= v/vm&x and g(x) is the spectrum or 

u2n= / x2ng(x)dx. (28) 
Jo 

The main difficulty encountered in using the mo
ments, for the calculation of the spectrum and other 
properties, is that the higher moments are heavily 
weighted with respect to one end of the spectrum. This 
gives rise to ill-conditioned equations. The values of the 
moments must, thus, be calculated to very high ac
curacy if the higher moments are to provide any extra 
information about these properties. Consequently, if 
more than twelve even moments are required, the 
evaluation has to be carried out using multilength 
working in the computer, whose single length register 
can hold up to eight significant digits. 

The moments in this fee lattice were first calculated 
on a Ferranti Mercury computer to double length ac
curacy, i.e., 16 significant figures. The program was 
later converted to triple length,20 i.e., 24 significant 
figures. The first 34 even moments are given in Table I 
together with the displaced moments defined by 

V2n= f (\-x2Yg{x)dx, (29) 
Jo 

so that on expanding (l—x2)n, 

n /fl\ 

^ 2 n = Z f j ( - l ) r « 2 r . (30) 

The spectrum can be derived by the use of an orthogo
nal polynomial expansion. If Pn(x) is an orthogonal set 
of polynomials in the range \x\ ^ 1, the spectrum can 
be expanded as 

00 

0 

where 

an= / Pn(x)g(x)dx. (32) 

The coefficients can be evaluated directly in terms of the 
moments. The spectrum using 21 and 22 even moments 
in a Legendre polynomial expansion is shown in Fig. 1, 
together with the spectrum obtained mechanically by 
Leighton.18 Unfortunately full use could not be made 
of the 34 moments as triple length working is not 
available on the University of London Computer, where 
this work was carried out. The convergence of this 
expansion is slow. This is due to the singularities which 
occur in the spectrum, and are characteristic of a three-
dimensional lattice. By locating the position of these 
singularities,13 the behavior of the spectrum at these 

201 am grateful to C. E. Phelps of the Oxford Computing 
Laboratory for performing this transformation. 
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TABLE I. The moments of the fee lattice; £/2» is the 2nth normalized moment and V2n is the 2nth normalized displaced moment. 
These are both given in floating point convention i.e. a, 6 = aX106. 

n 
~0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

1.00000 
5.00000 
3.12500 
2.22656 
1.71630 

1.38824 
1.15787 
9.85897 
8.51962 
7.44508 

6.56434 
5.83080 
5.21226 
4.68549 
4.23319 

3.84210 
3.50188 
3.20430 
2.94273 
2.71179 

2.50703 
2.32478 
2.16196 
2.01601 
1.88473 

1.76628 
1.65908 
1.56179 
1.47324 
1.39244 

1.31851 
1.25070 
1.18837 
1.13094 
1.07790 

00000 
00000 
00000 
25000 
85937 

46289 
50610 
77946 
08208 
52349 

12235 
37721 
44747 
89484 
55658 

72315 
35779 
09673 
57727 
25621 

45201 
35129 
89284 
15088 
28210 

38580 
81429 
59788 
73720 
17729 

32271 
98567 
68304 
21647 
48356 

U2n 

00000 
00000 
00000 
00000 
50000 

06250 
35156 
47216 
79936 
40052 

65861 
87209 
32819 
37327 
39764 

61048 
01526 
17510 
35107 
81928 

16797 
10221 
78080 
44515 
08826 

92625 
45816 
27420 
76300 
43705 

55876 
71010 
68219 
89859 
71123 

00000 
00000 
00000 
00000 
00000 

00000 
25000 
79687 
21826 
03247 

58275 
68812 
50806 
72642 
64025 

27502 
97199 
88735 
58415 
99416 

13098 
62065 
48542 
15502 
03275 

57463 
53901 
10708 
35907 
75964 

94419 
12099 
44941 
06965 
62285 

000, 
000, 
000, 
000, 
000, 

000, 
000, 
500, 
185, 
072, 

604, 
699, 
261, 
388, 
896, 

574, 
255, 
813, 
298, 
762, 

531, 
313, 
815, 
348, 
203, 

887, 
046, 
711, 
933, 
459, 

981, 
665, 
274, 
998, 
800, 

0 
-1 
-1 
-1 
-1 

-1 
-1 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

1.00000 
5.00000 
3.12500 
2.14843 
1.56005 

1.17767 
9.16786 
7.32203 
5.97683 
4.97144 

4.20330 
3.60485 
3.13042 
2.74836 
2.43629 

2.17811 
1.96201 
1.77921 
1.62308 
1.48855 

1.37171 
1.26948 
1.17944 
1.09965 
1.02855 

9.64859 
9.07539 
8.55726 
8.08704 
7.65870 

7.26717 
6.90814 
6.57791 
6.27335 
5.99172 

00000 
00000 
00000 
75000 
85937 

33398 
19384 
72200 
89910 
85183 

06611 
57874 
33418 
14603 
83450 

93812 
96309 
69632 
47888 
70595 

33673 
52816 
56190 
52847 
06292 

67740 
17759 
83035 
69759 
92860 

72905 
05736 
93073 
50896 
33230 

V2n 

00000 
00000 
00000 
00000 
50000 

43750 
76562 
01220 
45951 
35819 

74580 
89213 
38195 
83819 
20304 

61861 
48347 
61716 
63482 
39037 

23317 
42612 
06111 
50039 
85414 

22976 
14862 
36202 
60147 
91062 

05374 
08361 
54590 
88701 
90801 

00000 
00000 
00000 
00000 
00000 

00000 
50000 
70311 
84325 
24436 

45481 
98074 
48348 
12166 
62357 

55423 
56589 
74901 
28318 
05606 

43133 
00516 
53617 
13191 
69291 

91897 
47747 
58334 
36731 
75317 

21518 
93131 
48222 
99759 
98564 

000, 
000, 
000, 
000, 
000, 

000, 
000, 
909, 
169, 
864, 

356, 
056, 
026, 
366, 
692, 

775, 
344, 
154, 
557, 
652, 

433, 
437, 
295, 
066, 
120, 

972, 
225, 
456, 
355, 
634, 

013, 
894, 
326, 
322, 
605, 

0 
-1 
-1 
-1 
-1 

-1 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-2 
-2 
-2 
-2 
-2 

-3 
-3 
-3 
-3 
-3 

-3 
-3 
-3 
-3 
-3 

ments. The specific heat expansion is given by 

Cv oo (2n - l ) / © \ 2 n 

=E BnuJ-) (-1)"*1, (33) 
3N*k o 2nl \T/ 

(Bn are the Bernoulli numbers) where ®=hvmtt3Jk. 
This series, however, diverges at ®/T=2TT, i.e., 
T/@=0.159155. 

Domb and Isenberg12 have shown that with 14 mo
ments this series can be analytically continued, by the 
use of the Pade approximant, down to (T/®)~0.05. 
Below this temperature the low-frequency expansion of 
the spectrum gives the accurate behavior of the specific 
heat. Two terms in the low-frequency expansion of the 
fee lattice have already been obtained by Barron and 
Domb21 so that the third term can be obtained approxi
mately by extrapolating the displaced moments as dis
cussed by Domb et al.u The low-frequency expansion, 
thus, gives 

>wg (*) = 2.6033x2+4.639x4+7.45x6+ • • •. (34) 
2 1T. H. K. Barron and C. Domb, Procf Roy. Soc. (London) 

A227, 447 (1955), 

points can be obtained. The effect of these singularities 
could then be subtracted out,14 leaving a series whose 
convergence would be much improved. 

It would not be difficult to get more moments on a 
faster multilength computer, if greater accuracy was 
required. 

THE SPECIFIC HEAT AND OTHER 
THERMODYNAMIC FUNCTIONS 

The specific heat and all the thermodynamic functions 
have high-temperature expansions in terms of the mo-

9(x) 

FIG. 1. Successive ap
proximations to the spec
trum of the fee lattice 
using 21 and 22 even 
moments in a Legendre 
polynomial expansion, 
compared with that ob
tained by Leigh ton. 

- LEIGHTGN 
•22 MOMENTS 
-21 MOMENTS 
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0.05 O.IO Q20 Q25 

FIG. 2. The reduced equivalent Debye temperature © D / @ 
against T/% using a [15,18] Pade approximant to (Cv/3N3k)2 

down to (I1/®) =0.038, and three terms in the low-temperature 
expansion for (T/O) <0.038. 

The last, extrapolated, coefficient is correct to 5%. At 
low temperatures the specific heat22 becomes 

3Nzk 

/2x7\ 
= 2.6033xB2f J + 4 . 6 3 9 T 5 3 ( J 

/2TT\7 

~e~/ 
+7.45^i — ) + • (35) 

/2xr\3 /2irr\6 

= 0.27262f J +0.3470( j 

+0.78I 
/2TT\7 

(36) 

The specific heat expressed in terms of the equivalent 
Debye temperature ®D is shown in Fig. 2 using 33 even 
moments in a [15,18] Pade approximant to Cv

2 which 
gives the correct low temperature Tz behavior, down to 
T/® = 0.0438. Below this temperature (36) is used. 
Table II gives the coefficients in the Pade approximants, 
where A is the [15,18] Pade approximant to Cv

2, the 
coefficients ar and br are given by 

(is^-LSHr) /SKF) ]• (37) 

where {Cv/3Wk)2[M,N~] is the [M,N] Pade approxi
mant to (Cv/3N8k)2, B is the [16,18] Pade approximant 
to (Cv/3Nzk) and is tabulated because Cv is more easily 
evaluated. 

Figure 3 shows the fractional error (ACV/CV), plotted 
on a logarithmic scale, in the specific heat one may 
expect by using 33 even moments in a [15,18] Pade 
approximant for Cv

2, for a 1-dimensional model, and 
three terms in the low-temperature expansion. This was 
worked out for the monatomic linear chain with nearest 
neighbor interactions, for which Cv can be calculated 
exactly at all temperatures. The error is largest at T/® 

22 J. DeLaunay, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2. 

= 0.038 where its value is 1.4X10-4. The fractional 
error rapidly decreases to less than 10~4 outside the 
range 0.056>T/O>0.02, becoming less than 10~6 out
side the range 0.07> T/®> 0.012. One may expect from 
the results of different Pade approximants and the low-
temperature expansions, that the fractional error in the 
specific heat for this fee model would be of the same 
order of magnitude as that for the linear chain. 

The use of the Pade approximant together with the 
low-temperature expansion has enabled the specific heat 
to be outlined to an accuracy which at the very least is 
a factor of 10 better than any previous method, and 
over most of the temperature range is a factor of 102 

better for 0.07<T/®<0.012. 

THE ZERO-POINT ENERGY 

Domb et al.u have shown that the zero-point energy 
of the lattice can most easily be obtained by expanding 
it in terms of the displaced moments, and correcting 
for the remaining unknown moments by means of the 
low-frequency expansion, to give 

E0 3fP-i / K 

N%v 2L o 

C2 C4 

16 (2p+1) (2#-1) 2 (2^+3) (2p+l) (2p-l) 

15C6 

S(2p+5)(2p+3)(2p+l)(2p-l) 
(38) 

where ^=35, one greater\han the number of moments 
calculated, and 'C2, C4, CG are the coefficients in the low 
frequency expansion of the spectrum as given in (34). 
Substituting into (38) from (34), 

-=1.022 662 15. (39) 

(Error of ± 5 in the last decimal place.) The accuracy to 
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FIG. 3. A logarithmic plot of the accuracy of the specific heat 
(ACv/Cyagainst (T/@) for the linear chain. The continuous curve 
is the accuracy of [16,17] Pade* approximant to (Cv/SN3k) and the 
dashed curve the accuracy of three terms in the low-temperature 
expansion. 
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TABLE II. A is the [15,18] Pade approximant to (Cv/3Ndk)2 and B is the [16,18] Pade approximant to (Cv/3N3k). ar and br are, 
respectively, the coefficients in the numerator and denominator of the Pade approximants. (Note: The coefficients are given in floating 
point convention where a, £ = aX10&.) 

r 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

ar 

1.0000000, 
6.2510638, 
4.7317557, 

-4.2763040, 
-6.7556233, 
1.4988435, 
2.8224286, 

-6.1735016, 
-2.2407414, 
-2.8918513, 
-2.0832640, 
-9.1582611, 
-2.6585246, 
-6.4914120, 
-8.6855623, 
-7.6880694, 

A 

0 
-2 
-4 
-5 
-7 
-8 
-10 
-12 
-13 
-15 
-17 
-20 
-22 
-25 
-28 
-31 

br 

1.0000000, 
1.4584397, 
8.2865620, 
1.9691712, 

-4.1804517, 
-1.1884444, 
-1.6732481, 
2.0750606, 
3.6248470, 

-2.3768265, 
-9.9632230, 
-1.9104360, 
-2.3019023, 
-1.8982890, 
-1.0982714, 
-4.4215026, 
-1.1896391, 
-1.9314971, 
-1.4000082, 

0 
-1 
-3 
-4 
-7 
-7 
-9 
-11 
-13 
-14 
-16 
-17 
-19 
-21 
-23 
-26 
-28 
-31 
-34 

ar 

1.0000000, 
2.9295405, 

-2.4936205, 
-8.5237744, 
1.2594683, 
4.3192132, 

-8.1039094, 
-1.3907575, 
3.9867657, 
4.1511495, 

-1.4475964, 
-3.0210906, 
-2.2573017, 
-8.1667127, 
-1.6777684, 
-3.3282587, 
2.8027457, 

B 

0 
-2 
-3 
-5 
-6 
-8 
-10 
-11 
-13 
-15 
-16 
-18 
-20 
-23 
-25 
-28 
-32 

> 

br 

1.0000000, 
7.0962071, 

-8.3895082, 
-1.7577770, 
-3.3529944, 
5.7077285, 
1.4736870, 

-2.8165452, 
-4.9851083, 
1.4198298, 
1.8914953, 

-6.9669695, 
-2.0758395, 
-2.4399176, 
-1.5625398, 
-5.7248442, 
-1.1273250, 
-9.1280289, 
2.3615252, 

0 
-2 
-4 
-4 
-5 
-8 
-9 
-11 
-13 
-14 
-16 
-18 
-19 
-21 
-23 
-26 
-28 
-32 
-35 

which the zero point energy can be obtained illustrates 
well the power of the series expansion method. 

CONCLUSIONS 

The evaluation of large numbers of moments has 
enabled the thermodynamic properties to be obtained 
accurately, down to temperatures of r / © ^ 0 . 0 3 8 . The 
spectrum, on the other hand, can be obtained to high 
accuracy if one is prepared to locate the position of the 
critical points and the behavior of the spectrum near 
these points. Alternatively, if analytical methods fail to 
locate the singularities, the direct moment expansion 
can indicate their approximate position, and give an 
approximate spectrum. 

Together, the moment expansion at high tempera
tures and the low-temperature expansion provide a 
more detailed knowledge of the equilibrium properties 
of crystals than has been previously obtained. The 
extension of the method to more complex unit cells, and 
larger range interactions is limited only by the time 
taken for the computation. At present, using the fastest 
computers, interactions between the first 30 nearest-

neighbor atoms could be taken into account for crystals 
with cubic symmetry. 

Results have also been obtained for other models of 
the fee lattice, with second neighbor interactions, 
together with models of bec, sc, and sq lattices. The 
only monatomic lattices with more than one atom per 
unit cell, for which moments have been calculated, is the 
hexagonal close packed. This lattice has a similar 
topology to that of the fee which results in the two 
lattices having very similar moments. I t is hoped to 
publish all these results in the future. 
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